Useful Relations for Countercurrent
Distribution Computations

T oy
Expressions have been developed for the prediction and evaluation of results.
from countercurrent distribution experiments. Included:is a method for de-’
termining the number of trangfers required for a given “degree of separation”

and pair of partition coefficients.

An approximate relation is proposed for de-

termining the number of transfers required to resolve composite peaks.

ECENTLY Craig (1, 2)has introduced several ingenious de-
1 U vices for conducting a series of liquid-liquid distributions
between immiscible solvent pairs. The use of these new multiple
distribution techniques, which Craig has termed ‘“‘countercurrent
distribution,” is becoming increasingly popular as a means of
geparating, purifying, and identifying compounds. It has also
been used as an analytical means of determining purity, inasmuch
as many substances have essentially linear partition isotherms in
a variety of solvent combinations and when this is true it is pos-
sible to estimate accurately the amount to be expected in a cer-
tain tube for a given partition coefficient.

The calculation of theoretical distribution curves has been
given an excellent treatment by Williamson and Craig (7). Cal-
culations of the distribution curves for experiments involving &
large number of transfers by the methods suggested are still
somewhat time-consuming, however, and it réquires considerable
familiarity with them to make even a rough approximation as to
whether the method would be applicable to certain problems, It
has been the author’s experience that the possible utility of the
method is grasped more readily when one has available an equa-
_jon relating the known partition coefficients and desired degree of
separation to the number of transfers required. With a relation
of this type it is at the same time possible to gain an idea of the
relative efficiency of the Craig method as compared with continu-
ous multiple extraction processes exemplified by paper and parti-
.tion chromatography and countercurrent extraction. The man-
per in which such & comparison could be made is contained in the
work of Mayer and Tompkins (6) on the theory of exchange resin
column separations. Their treatment of the distribution of sub-
stances on an ion exchange column can be shown to be essentially
mathematically equivalent to Williamson and Craig's (7) treat-

ment of distribution of substances in a Craig apparatus. Mayer

and Tompkins also give & graphical method for the determination
of degree of separation which could be applied to countercurrent
distributions. The present treatment is particularly suitable for
distributions within a Craig apparatus. However, its application
to column separations is also possible within the limitations al-
ready discussed by Mayer and Tompkins.

In addition to deriving equations of the above-mentioned
type, & number of other useful approximate relations are given to
assist in rapid computations. Included are an accurate method for
determining the areas under the tails of distribution curves by
~eans of probability function tables, and a simple spproximate

Lethod for determining how many transfers are recuired to re-
golve the peaks of distribution curves when the par:iion coeffi-
cients are known or can be estimated. The derived egpations will
apply to those distributions obtained by analyzing doth phases
which Craig (2) has termed the “fundamental”’ operation. A
complete discussion of the various operations and tvpes of dis-
tribution apparatus is given by Craig and Post 2).

EQUATIONS FOR INTERSECTION POINTS AND MAXIMA

Attention is first centered on obtaining expressions for inter-
otion Doints and maxima of the distribution curves of a system

of two components; @ and b, where the fractional a.moimtsv of a
and b in the mixture are expressed by Fa and F,, respectively.

Consider an experiment in which the upper phase migrates
while the lower phase remains stationary. he tubes are num-
bered 0,1,2,3,..., 7 The lower layers of each tube are filled,
the sample is placed in tube 0, equilibration of the substance
between layers is effected, and the top layer of tube 0 is trans-
ferred to tube 1. The same process is repeated n times, each time
all top layers being transferred to the next highest tube in number.
The binomial expansion, Equation 1, then gives the fractional
amount of the mixture as represented by substance a, T to be
found in tube r after n transfers when the partition coefficient is
K.. A similar relation holds for substance b. The fractional
amount of the mixture in tube r after n transfers would be the sum
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of the fractions represented by substdn;és a énd b. The intersec-
tion fomt of the distribution curves for substances a and b is

found by equating Te_ and T, andis shown in Equation 2.
The quantity log Fs/Fs is .readily seen:to be negligibly small
s (£22)
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except when F, and F, are considerally different. In deriving
agproxxmate relations for the intersestion point, therefore, we
shall neglect the effect of this term.

Williamson and Craig (7) proposed the use of the normal proba-
bility function as a means of approximating the amount of ma-
terial in a given tube when the numbar of transfers is large, and in
line with their use of this function Bquation 3 lfives an approxi-
mate expression for T, The quantity rme in quation 3 18 the
tube at which the maximum amouct of substance a is located
after n transfers. The intersection point of the distribution
curvis for two substances, a and b, ¥ou d then be given by Equa-
tion 4. :
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It can be demonstra'w?‘tbat term B in Equation 4 is small in
most cases and Equation in which this term has been neglected,
will serve as a good & poximation for practical ap lication—i.e.,
nis greater than 20, K'r;ave between 0.1 and 10, and Fsand Fj are
not greatly different. } is interesting to note that the first term

i Equation 2 is approximately equal over

on the right-hand sideot
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the complete ra.ngaof values of Ko and K to the right-hand side
of Equation . .

where

ri=En



the following paragraph. This formula is particularly good when
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It will now be in line with our ultimate objective to obtain an

eg}press;on for rma. Craig (1) proposed the approximate relation
(Equation 7) from empirical considerations.
K.
Tma= N l—m) (7)

The derivation of this equation is given here in order to acquaint
one better with the de%ee of approximation involved. It is as
follows: Differentiate quation 1 with respect to n after using
Stirling’s approximation. Set the derivative equal to zero and the
exprassion (Equation 8) is obtained after simplification. When
is large with respect to r, the first and third terms cancel, which
leads to Equation 7, where r equals g in this case,

n +lnn—r— n—r +an+1=0 ®

USE OF PROBABILITY FUNCTION TABLES

As previously stated, Equation 3 is the normal probability
distribution curve of unit ares in which the standard deviation o
is assigned the value /7K /(1 + K). The area (4?) under the
tail of the distribution curve for substance a (see shaded area in
Figure 1) can be defined as
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where ¢ is equal to (r — ma) divided by ¢..  The limit of integra-
tion is designated as f, and varjable of integration as f." This
distinction, although mathematically precise, is not always made.
However, it is particularly desirable in the present treatment.

Accordingly, multiplication of this area by the fraction, Fa,ofa
substance a gives the corresponding fractional amount of the
total mixture as represented by substance a. The above integral
is not commonly found in tables; therefore Equations 9 and 10
are given where the integral in Equation 9 can be found in Lange's
bandbook (4) and the integral in Equation 10 is tabulated in
Hodgman’s handbook (8). It will be useful to ramember that
for values of ¢ equal to 1, 2, and 3, the corresponding areas under
the tail are 4, = 0.159, 4; = 0.0227, and 4; = 0.0013,
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Table I. Comparison of Areas under Tails of Distribution
Curves as Calculated by Equations 10 with 11 and 14 and
Binomial Expansion

K noor—rm Area® (Eq. 11)  Area® (Eq. 14) Area (B.E
1 24 6 0.012 0.007 0.0112
1 24 5 0.032 0.021 0.0318
1 24 4 0.076 0.051 0.0757
1 24 3 0.154 0.110 0.1536
1 24 2 0.271 0.207 0.2705
2 24 5 0.026 0.015 0.0191
2 24 4 0.064 0.042 0.0586
2 24 3 0.140 0.097 0.1375
2 24 2 0.258 0.193 0.2624
4 24 3 0.101 0.063 0.1145
10 24 2 0.144 0.078 0.1016
1 48 8 0.015 0.010 0.0139
1 48 4 0.155 0.124 0.1552

¢ Areas caleulated on basis of unit amounts of each substance.
Areas in last column are under those tails which point toward higher
tube numbers. When partition coefficients differ greatly from 1, this spe-
cification is particularly necessary. i
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For a reasonably accurate application of the equations for a
continuous distribution to a discrete distribution as actually
encountered, the value of (r; — Tma) used in calculating ¢ can be
replaced by (7 — 7 — 0.5). This arises from the nature of the
discrete and continuous curves, This adjustment is particularly
necessary when the number of transfers is comparatively small,

The use of Equations 10 and 11 in calculating areas under the
tails of distribution curves is compared with results from the
binomial expansion as shown in Table I.

T8 — Tma — 0.5 -

> t (11)

ESTIMATION OF THE AMOUNT OF SEPARATION

With a means for estimating areas under the distribution
curves, it is now possible to formulate a method for determining
the degree of separation to be expected for two substances of par-
tition coefficients K, and K after a given number of transfers,
As a measure of the amount of separation we use the area under
the tail of the distribution curve of the substance of lowest parti-
tion coefficient from the point where the two curves intersect,
The ¢ value corresponding to this area will be called the degree of
separation. Martin and Synge (6) have used ¢ values in a similar
sense in their theory of partition chromatography. Mayer and
Tompkins (6) have defined and used ¢ in an analogous manner in
their theoretical analysis of exchange resin column separations.

The use of Equations 11, 5, and 7 leads to the following equa-
tions, where K> K,.

- 05 =7 (l‘ﬁ{) f (12)
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When the factor 0.5 is omitted from Equation'11 we get Equa-
tion 14, which givesa rough estimation of the area which improves
as n increases.

where

s — Tma =t (14)
a

Using Equations 12, 5, and 7, Equation 14 can be put in & m
convenient form, as shown in Equation 15.

n = St2
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where

We now have two expressions for estimating the degree of
separation for given partition coefficients and a given number of
transfers. Equation 13 is necessary where one deals with a
limited number of transfers and intermediate degrees of separa-
tion and Equation 15 is desirable for large numbers of transfers
and high values of t.

Comparable agreement to that previously shown in Table I for
calculated areas under tails of distribution curves can be expected
using Equation 12, providing we round off the (r; — rma) values to
the nearest whole numbers, as must necessarily be the case in
actual operation. -Although Equation 15 gives a rough estimate
as compared with Equation 12, its convenient form makes it use-
ful as a quick means for determining the fractionating power of
the method once two partition coefficients are known. There-
fore, in Figure 2 the separation factor is plotted against the higher
partition coefficient. 1f it is desired to know the number of trans-
fers required for practically complete separation, multiplication
by 3 gives the answer immediately.
spond to various combinations of Ks and Ks. In deriving the
expression for § it must be remembered that we have adhered to
the convention that K is greater than K.,; therefore the abscissa
in the plot corresponds to different values of Ky compared with
values of K, which have been denoted by placing the latter as
subscripts to S for a given curve. The curve approaches the
value of K, asymptotically. Results of calculations from Equa-
tions 13 and 15 are more exact the nearer the partition coefficients
are to unity. ‘

One point of interest arising in connection with the separation
factor S is the following. It is tempting to measure the degree of
separation by the ratio of the partition coefficients or & function of

“the ratio of the partition coefficients—e.g., Martin and Synge (6)

* “used a procedure of this sort in their theory of partition chromatog-
raphy. The ambiguity in such a procedure as applied to counter-
current distribution studies is clearly brought out in Table 1I,
where the factor S is shown for different values of K, and K cor-
responding to the ratio Ko/ Kp = 1.5.

RESOLUTION OF PEAKS

Formulas are now available for answering another question
concerning multiple distribution separations. Suppose we have
two substances and their partition coefficients are known or can
be estimated in some way. How many transfers would be re-
quired before the composite distribution curve would show two
peaks?

It can be demonstrated that the appearance of two peaks is
observable when the quantity 8 as defined in Equation 16 is large
enough to be experimentally detectable. We are assuming Fs and
Fy to be equal, which givesa minimum value for our answer. The
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second term on the right-hand side of Equation 16 can be re-
arranged with the help of Equation 17 to give

—n(Ka — Kb)?
e 2(1 + Ka)*Kb

Different curves corre- .

For even moderately different partition coefficients and large n
this term is small enough to be neglected and the simple Equation
17 will suffice.

—(ri—rma)?

5 = (Ta, — 2Twsi) = ————__21“ (1 P ) an-

The quantity 8is approximately 5% of T, Whenri — rms =
1.220,, and this difference should be experimenta.lly,detectable.

(Ka - Ka) n

d=2(r — Tme) = m (18)
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It is now worth while to observe that 7 — rms is one half the dis-
tance d (number of tubes) between the peaks as shown in Equa-
tion 18 where Formulas and 7 were used. The above condition
expressed in terms of n and the partition coefficients is shown in
Equation 19. .

2.44 VK, (1 + Kb)?
Kb b .Ku (19)

Therefore, Equation 19 gives us the number of transfers re-
quired to resolve a composite peak in terms of K, and Ks.

Another helpful relation when dealing with composite peaks is
shown in Equation 20. In this equation Py corresponds to the
number of the tube at the peak or minimum between the peaks
of a composite curve and P¢ is where the peaks would be if Fo =
Fy. Combined with Fa -+ F, = 1, Equation 20 can be used in
estimating the relative amounts of substances a and b where the

F¢ &Po—Pa

7= \& (20)

partition coefficients can be estimated from the tails of the dis-
tribution curves.
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Table II. Separation Factors for Partition Coefficients

Corresponding to a Definite Ratio

(1) Craig,
(2) Craig,

Ka Kb Ka/Kp S
0.6 0.4 1.5 110
0.9 0.6 1.5 99
1.5 1.0 1.5 98
6.0 4.0 1.5 172
9.0 6.0 1.5 230
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